Mitotic spindle form and function.

نویسندگان

  • Mark Winey
  • Kerry Bloom
چکیده

The Saccharomyces cerevisiae mitotic spindle in budding yeast is exemplified by its simplicity and elegance. Microtubules are nucleated from a crystalline array of proteins organized in the nuclear envelope, known as the spindle pole body in yeast (analogous to the centrosome in larger eukaryotes). The spindle has two classes of nuclear microtubules: kinetochore microtubules and interpolar microtubules. One kinetochore microtubule attaches to a single centromere on each chromosome, while approximately four interpolar microtubules emanate from each pole and interdigitate with interpolar microtubules from the opposite spindle to provide stability to the bipolar spindle. On the cytoplasmic face, two to three microtubules extend from the spindle pole toward the cell cortex. Processes requiring microtubule function are limited to spindles in mitosis and to spindle orientation and nuclear positioning in the cytoplasm. Microtubule function is regulated in large part via products of the 6 kinesin gene family and the 1 cytoplasmic dynein gene. A single bipolar kinesin (Cin8, class Kin-5), together with a depolymerase (Kip3, class Kin-8) or minus-end-directed kinesin (Kar3, class Kin-14), can support spindle function and cell viability. The remarkable feature of yeast cells is that they can survive with microtubules and genes for just two motor proteins, thus providing an unparalleled system to dissect microtubule and motor function within the spindle machine.

منابع مشابه

New Mitotic Regulators Released from Chromatin

Faithful action of the mitotic spindle segregates duplicated chromosomes into daughter cells. Perturbations of this process result in chromosome mis-segregation, leading to chromosomal instability and cancer development. Chromosomes are not simply passengers segregated by spindle microtubules but rather play a major active role in spindle assembly. The GTP bound form of the Ran GTPase (RanGTP),...

متن کامل

Expanding the role of HsEg5 within the mitotic and post-mitotic phases of the cell cycle.

The BimC family of kinesin like proteins are involved in spindle dynamics in a wide variety of organisms. The human member of this family, HsEg5, has been implicated in centrosome separation during prophase/prometaphase and in the organization of in vitro mitotic asters. HsEg5 displays a complex distribution during mitosis, associating with the centrosomes, spindle microtubules, specific region...

متن کامل

Cyclin A/cdk2 regulates adenomatous polyposis coli-dependent mitotic spindle anchoring.

Mutations in adenomatous polyposis coli (APC) protein is a major contributor to tumor initiation and progression in several tumor types. These mutations affect APC function in the Wnt-beta-catenin signaling and influence mitotic spindle anchoring to the cell cortex and orientation. Here we report that the mitotic anchoring and orientation function of APC is regulated by cyclin A/cdk2. Knockdown...

متن کامل

XKCM1: A Xenopus Kinesin-Related Protein That Regulates Microtubule Dynamics during Mitotic Spindle Assembly

We isolated a cDNA clone encoding a kinesin-related protein, which we named XKCM1. Antibodies to XKCM1 stain mitotic centromeres and spindle poles. Immunodepletion and antibody addition experiments in an in vitro spindle assembly assay show that XKCM1 is required for both establishment and maintenance of mitotic spindles. The structures that form in the absence of XKCM1 contain abnormally long ...

متن کامل

Interaction between Poly(ADP-ribose) and NuMA contributes to mitotic spindle pole assembly.

Poly(ADP-ribose) (pADPr), made by PARP-5a/tankyrase-1, localizes to the poles of mitotic spindles and is required for bipolar spindle assembly, but its molecular function in the spindle is poorly understood. To investigate this, we localized pADPr at spindle poles by immuno-EM. We then developed a concentrated mitotic lysate system from HeLa cells to probe spindle pole assembly in vitro. Microt...

متن کامل

Phenotypic analysis of misato function reveals roles of noncentrosomal microtubules in Drosophila spindle formation.

Mitotic spindle assembly in centrosome-containing cells relies on two main microtubule (MT) nucleation pathways, one based on centrosomes and the other on chromosomes. However, the relative role of these pathways is not well defined. In Drosophila, mutants without centrosomes can form functional anastral spindles and survive to adulthood. Here we show that mutations in the Drosophila misato (ms...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Genetics

دوره 190 4  شماره 

صفحات  -

تاریخ انتشار 2012